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Proteins can locate their specific targets on DNA up to two orders of magnitude faster than the Smolu-
chowski three-dimensional diffusion rate. This happens due to nonspecific adsorption of proteins to DNA and
subsequent one-dimensional sliding along DNA. We call such a one-dimensional route towards the target an
“antenna.” We studied the role of the dispersion of nonspecific binding energies within the antenna due to a
quasirandom sequence of natural DNA. A random energy profile for sliding proteins slows the searching rate
for the target. We show that this slowdown is different for macroscopic and mesoscopic antennas.

DOI: 10.1103/PhysRevE.74.021903 PACS number�s�: 87.14.Ee, 87.15.Vv

A protein binding to a specific site on DNA, which we
call the target, is one of the central paradigms of biology �1�.
Well-known examples include the lac-repressor in E. coli,
which regulates a specific gene producing enzyme-
consuming lactose and the proper restriction enzyme-
destroying genome of invading E. coli �-phage in real-time
warfare for bacteria survival. It has been known since the
early days of molecular biology that in some cases proteins
can find their target sites along a DNA chain one to two
orders faster than the maximum rate achievable by three-
dimensional diffusion �2,3�. To resolve this paradox, nonspe-
cific binding and subsequent one-dimensional �1D� sliding of
proteins along the DNA to the target were suggested as an
important component of the searching process �2,3�. This
idea was studied in various models proposed by both physi-
cists and biologists �4–8�. A comprehensive study of the in-
terplay between the 1D sliding and 3D diffusion for different
DNA conformations on the search rate can be found in Ref.
�9�.

Some authors calculate the typical time � needed for the
target site to be found by a protein, when a small concentra-
tion c of proteins is randomly introduced into the system.
Other authors �9� consider the specific site as a sink consum-
ing proteins with the diffusion-limited rate J proportional to
the concentration c �which in turn should be supported on a
constant level by an influx of proteins into the system�. Ob-
viously, then, �=1/J. Search rate enhancement due to the
sliding along DNA may be calculated as the ratio of the rate
J to the 3D Smoluchowski rate Js=4�D3cb of diffusion to
the sphere of radius b modeling the target site on DNA. The
central physical idea is that one can define a piece of DNA
adjacent to the target for which 1D sliding diffusion domi-
nates over a parallel 3D diffusion channel and which, there-
fore, serves as a receiving antenna for the 3D Smoluchowski-
like diffusion of proteins. Then the key point of the theory is
to find the antenna length �. In the language of stationary
flux J, this is done by matching the incoming 3D flux J3 of
proteins to the antenna with the 1D flux J1 of proteins sliding
on the antenna toward the target.

All the works cited above assume that the nonspecific
adsorption energy w of protein is sequence independent; i.e.,
the energy profile experienced by the searching protein away
from the target is totally flat. This, however, disagrees with
the quasirandom character of the natural sequences of DNA.
It is known that the nonspecific protein-DNA adsorption en-

ergy can be divided into two parts �10,11�: �i� The sequence-
independent Coulomb energy of the attraction between the
positively charged domain of the protein surface and the
negatively charged phosphate backbone and �ii� the sequence
specific adsorption energy due to the formation of hydrogen
bonds of the protein with the DNA bases. This is done by the
recognition �-helix going deep into the major groove of
DNA �1�. Suppose the protein encounters l base pairs be-
tween positions i and i+ l. We call this position of the protein
site i and characterize it by energy �i�0, where the energy
of the free protein in water is chosen to be 0. Because the
sliding protein has a complex nonuniform structure and in-
teracts with a random DNA sequence, the total energy �i
randomly fluctuates along DNA �Fig. 1�. One can assume
that at nonspecific positions on DNA, the protein exploits the
same set of potential hydrogen bonds it forms with the target
�12�. Since target recognition is often mediated by hydrogen
bonds to some of the four chemical groups on the major
groove side of the base pair �13� and the recognition �-helix
interacts with several base pairs, many hydrogen bonds con-
tribute to �i. Therefore the distribution of �i can be approxi-
mated by the Gaussian distribution �12,14,15� with a mean w
and standard deviation �� �w�:

g��i� =
1

�2��2
exp�−

��i − w�2

2�2 � . �1�

In this paper we study the role of disorder on the rate en-
hancement J /Js assuming that the disorder is strong—i.e.,
�	kT, where k is the Boltzmann constant and T is the am-
bient temperature.

FIG. 1. �Color online� Distribution of the nonspecific adsorption
energy � and chemical potential 
�x� along a DNA molecule. The
target site is located at x=0; � is the antenna length.
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Similar to the the case of the flat energy profile �9�, we
assume that transport outside the antenna is mainly due to the
3D diffusion, while inside the antenna transport is dominated
by sliding, or 1D diffusion, along DNA and we equate the
fluxes J1 and J3 to find �. The rate J3 is given by the Smolu-
chowski formula for the target size � and for the concentra-
tion of “free” �not adsorbed� proteins, c3; it is J3	D3c3�.
The flux on antenna J1 strongly depends on � and also, gen-
erally speaking, on the DNA sequence in the finite antenna.
We show that there is a characteristic length of the antenna,
�=�c�� ,T�, such that at �	�c flux J1 self-averages and be-
comes sequence independent. Such a “macroscopic” antenna
determines J /Js for moderate disorder. In this case, the ratio
J /Js decreases exponentially fast with the growth of disorder.
At stronger disorder we deal with a mesoscopic antenna with
���c and strictly speaking J /Js depends on a random DNA
sequence. In this paper, we concentrate only on the most
probable value of J /Js. In order to calculate it, we estimate
the most probable value of J1. We show that in such a me-
soscopic situation disorder leads to a weaker reduction of
J /Js.

We assume that within some volume v there is a straight,
immobile �double helical� DNA with length L smaller than
v1/3, but much larger than any antenna length. For a dilute
DNA solution, 1 /v stands for the concentration of DNA. We
also assume that all the microscopic length scales such as the
length of a base pair, the size of the target site, the diameter
of the DNA, etc., are of the same order b. We are mainly
interested in the scaling dependence of the rate enhancement
J /Js on major system parameters, such as �, w, L, and v.
This means that all numerical coefficients are dropped in our
scaling estimates.

To estimate J1, we assume that at each site i on DNA, the
protein has some probabilities of hopping to nearest-
neighboring sites j. We write the probability for the hopping
from an occupied site i to an empty site j as

�ij = �0 exp
−
� j − �i + �� j − �i�

2kT
�

= ��0 exp
−
� j − �i

kT
� if � j 	 �i,

�0 if � j � �i,
 �2�

where �0	D1 /b2 is the effective attempt frequency. In Eq.
�2� we neglected the activation barriers separating two states
in comparison with � j −�i. The number of proteins making
such a transition from site i to j per unit time can be esti-
mated by ij =�ij f i�1− f j�, where the function f i is the aver-
age occupation number of sites, i. At small enough c, all f i
�1 and thus ij ��ij f i. The function f i is given then by

f i = exp�− ��i − 
i�/kT� , �3�

where 
i is the chemical potential. Using ij and  ji, we can
write the net flux from site i to j in the form

Jij = ij −  ji � �0e−�ij/kT�e
i/kT − e
j/kT� , �4�

where �ij =max��i ,� j�.

We now argue that as long as the antenna is only a small
part of the DNA molecule, every protein adsorbs to DNA and
desorbs many times before it locates the target. Therefore,
outside the antenna there is statistical equilibrium between
adsorbed and desorbed proteins, and hence proteins have a
uniform chemical potential 
i=
=kT ln�c3b3�. Within the
antenna, 
i decreases when the site approaches the target and
reaches −� at the target site �see Fig. 1�. If we label the
border of the antenna as site 1 and the target as site � /b+1,
using Eq. �4�, we can write

�
i=1

�/b

Jije
�ij/kT = �0�e
/kT − e−�/kT� = �0c3b3, �5�

where j= i+1. Since the 1D current J1 towards the target is
the same at any antenna site—i.e., Jij =J1—we can find it as

J1 =
�0c3b3

�
i=1

�/b

exp��ij/kT�

�
�0c3b3�2��2

��/b��
−�

0

d�ijR��ij�
, �6�

where R��ij� is given by

R��ij� = �2��2g��ij�exp��ij/kT�

= exp� �2

2�kT�2 +
w

kT
−

��ij − �w + �2/kT��2

2�2 � . �7�

One can interpret Eq. �6� as Ohm’s law, where the numerator
plays the role of the voltage applied to the antenna and the
denominator is the sum of resistances of all pairs �i , j� which
are similar to Miller-Abrahams resistances for the hopping
transport of electrons �16�.

The sharp maximum value of the function R��ij� deter-
mining the sum of Eq. �6� is reached when �ij =�opt=w
+�2 /kT and R��opt�	exp��2 /2�kT�2+w /kT�. Thus

J1 	
D3c3b2

�
exp� �w�

kT
−

�2

2�kT�2� , �8�

where we assumed for simplicity that D3=D1	b2�0.
Before we move forward, we emphasize the crucial as-

sumption already made in the above derivation. We assumed
that � is so long that within the antenna the sliding protein
encounters sites with energy �opt more than once and, there-
fore, the sum in Eq. �6� can be replaced by the integral with
limits from −� to 0. We call such an antenna macroscopic.
For a short antenna, the probability for such a site to appear
inside is very small. Thus the sum in Eq. �6� is determined by
the largest value of R��ij� typically available within the an-
tenna. We call such an antenna mesoscopic.

Macroscopic antenna. We study the macroscopic antenna
first. Using J1 and J3, our main balance equation for the rate
J reads

J 	 D3c3� 	
D3c3b2

�
exp� �w�

kT
−

�2

2�kT�2� . �9�

Thus the antenna length � is obtained as
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� 	 b exp� �w�
2kT

−
�2

4�kT�2� . �10�

Next we calculate the free protein concentration c3. Sup-
pose the one-dimensional concentration of nonspecifically
adsorbed proteins is c1. Assuming the antenna is only a small
part of the DNA and remembering that adsorbed proteins are
confined within a distance of the order of b from the DNA,
we can write down the equilibrium condition as

c1

c3b2 	� f���e−�/kTd� 	 exp� �w�
kT

+
�2

2�kT�2� , �11�

which must be complemented by the particle counting con-
dition c1L+c3�v−Lb2�=cv. Since the volume fraction of
DNA is always small, Lb2�v, standard algebra then yields

c3 �
cv

yLb2 + v
	 �c if y � v/Lb2,

cv/Lb2y if y 	 v/Lb2 � �12�

where y is exp��w� /kT+�2 /2�kT�2�. Equation �12� leads to
two different scaling regimes, which are denoted as A and B
in Fig. 2. In regime A, the nonspecific adsorption is relatively
weak, c3	c; we arrive at

J

Js
	 exp� �w�

2kT
−

�2

4�kT�2� �regime A� . �13�

In regime B, most proteins are adsorbed. Using the lower
line of Eq. �12�, we obtain

J

Js
	

v
Lb2 exp�−

�w�
2kT

−
3�2

4�kT�2� �regime B� . �14�

In both regimes, �w�	�2 /kT; thus the � term of ln�J /Js�
constitutes a correction. The size of the antenna grows with
�w�; however, unproductive nonspecific adsorption of pro-
teins on distant pieces of DNA grows with �w� too and can
slow down the transport to the specific target. These two
effects compete; as a result, the rate enhancement J /Js grows
with w in regime A and declines in regime B. On the other
hand, a growing � reduces the antenna size and promotes
nonspecific adsorption. Therefore, J /Js decreases with � in
both regimes.

The above theory deals with a macroscopic antenna. To

be macroscopic, the antenna has to contain at least one site
with energy around �opt. The number of sites n��� with en-
ergy � within the antenna is of the order of 	�� /b�exp�−��
−w�2 /2�2�. Thus a macroscopic antenna requires n��opt�
	1, which gives �	�c=b exp��2 /2�kT�2�. Since we know
� from Eq. �10�, this condition can be written explicitly as
�w�	3�2 /2kT. Hence, �w�=3�2 /2kT is the border between
the macroscopic regimes �A ,B� and mesoscopic regimes
�C ,D� in Fig. 2. We can check that when �w�	3�2 /2kT, the
condition �opt�0 is satisfied for the case of a macroscopic
antenna. Now we are ready to switch to the case of a meso-
scopic antenna and explain regimes C and D.

Mesoscopic antenna. In this case, the upper limit of the
integral in Eq. �6� should be replaced by ����opt which is
the largest energy typically available within the antenna. It
can be estimated from n����	1; it is ��	w+�2��ln�� /b�.
Using w and ��, we can estimate the sum in Eq. �6� and get
typical 1D current for the case of a mesoscopic antenna:

J1��� 	 D3c3b exp� �w�
kT

− �2 ln��/b�
�

kT
� . �15�

Equation �15� is apparently different from Eq. �8�, valid for
the macroscopic antenna. This difference is partially related
to the rate enhancement of 1D diffusion at a small time scale
noticed for Gaussian disorder in computer simulations �12�.
Equating J1��� to J3	D3c3�, we obtain the antenna length

� 	 b exp�
��w�
kT

+
�2

2�kT�2 −
�

�2kT
�2� . �16�

We can check, with this �, that the condition ���0 still
holds. When �w���2 /2kT, the antenna length �
	b exp�w2 /2�2�. For a given adsorption energy w, the de-
pendence ���� is plotted in Fig. 3. It shows that the decrease
of the antenna length with growing disorder strength slows
down when the antenna becomes mesoscopic.

The crossover from a relatively weak adsorption to a
strong one described by Eqs. �12� again leads to the two
scaling regimes for the case of a mesoscopic antenna. They
are labeled C and D in Fig. 2. For relatively weak adsorption,
when �w���2 /kT, we obtain regime C, where

FIG. 2. �Color online� The phase diagram of the scaling regimes
for �w�	�	kT. Each line marks a smooth crossover between scal-
ing regimes. The red line �w�=3�2 /2kT marks border 1 between
macroscopic regimes �A ,B� and mesoscopic regimes �C ,D�. The
blue line �w�=kT ln�v /Lb2�−�2 /2kT marks border 2 between
weak and strong adsorption regimes. They intersect at �0

=kT��1/2�ln�v /Lb2��1/2, �w�=kT�3/4�ln�v /Lb2�.

FIG. 3. �Color online� Dependence of the antenna length � on
the disorder strength �. Dashed lines represent the asymptotic
limits.
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J

Js
	 exp
 w2

2�2� �regime C� , �17�

while for strong adsorption we have regime D where

J

Js
	

v
Lb2 exp�−

�w�
kT

−
�2

2�kT�2� �regime D� . �18�

In experiment, the adsorption energy w can be controlled
by the salt concentration changing the Coulomb part of
protein-DNA interaction �17�. The dependences of ln�J /Js�
on �w� at the two specified values of disorder strength �1 and
�2 marked in Fig. 2 are schematically plotted in Fig. 4. For
comparison, we also plotted the case of the flat energy profile
��=0�. In both cases with �	0, ln�J /Js� first grows propor-
tional to w2 �regime C�, because the antenna is mesoscopic
and thus 1D diffusion is faster, when compared to the normal
diffusion at macroscopic antenna. For a relatively small dis-
order �=�1, this rate enhancement continues to regime A but
with a rate proportional to �w� because the antenna grows to
be macroscopic. For a larger disorder �=�2, strong nonspe-

cific adsorption of proteins on distant pieces of DNA slows
down the search rate, when the antenna is still mesoscopic,
and ln�J /Js� decreases in regime D faster than it does in
regime B. The antenna in regime B is macroscopic and
ln�J /Js� decreases proportional to �w� for both �=�1 and
�=�2.

The crossover from the weak disorder to the strong one
happens at �	�0=kT��1/2�ln�v /Lb2��1/2 �see Fig. 2�. If one
plugs in the achievable experimental conditions with L /b
	150 and v	L3, the estimate of �0 is of the order of 2kT,
which falls in the range of estimates of � from 1kT to 6kT
used in the Refs. �12,14,15�. Apparently � grows for proteins
with a larger number of contacts with DNA and �0 decreases
with DNA concentration. In order to identify the role of
strong disorder, we look forward to more experiments deal-
ing with relatively large concentrations of short straight
DNA to guarantee that disorder strength satisfies �	�0.

We know only one observation �17� of the peak in the
coordinates of Fig. 4 but for a long and definitely coiled
DNA where our theory is not directly applicable. In our re-
cent paper �9�, we presented a general theory including
Gaussian coiled and globular DNA in the absence of disor-
der. In the current paper, we concentrated on the simplest
regimes labeled A and D in Fig. 4�a� of Ref. �9� and still got
the rather complicated diagram of Fig. 2 �18�. That is why
we did not try to present our theory for more complicated
regimes here.

Recently, the 1D sliding distance along DNA �which co-
incides with � for straight DNA� was measured for the
BbvCI restriction enzyme �19�. The authors claim that even
in low-ionic-strength buffers, the 1D sliding is limited to
distances �75 base pairs which do not exceed the DNA
persistence length. In this case, our theory, designed for rela-
tively short and, therefore, straight DNA, should be appli-
cable.

We are grateful to A.Yu. Grosberg, S.D. Baranovskii, and
J. Zhang for useful discussions.
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